INDIAN SCHOOL AL WADI AL KABIR

FIRST REHEARSAL EXAMINATION_SAMPLE PAPER(2023-24)

Class:	Class: X Sub: MATHEMATICS						Ma	x Marks: 80	
			6	General Instruc	tions:]	Time:3 Hours	
1.	1. This Question Paper has 5 Sections A,B,C,D and E.								
2.	2. Section A has 20 Multiple Choice Questions (MCQs) carrying 01 mark each.								
3.	3. Section B has 5 Short Answer-I (SA-I) type questions carrying 02 marks each.								
4.	. Sectio	on C has 6 Short A	nswer-I	I (SA-II) type que	stions c	arrying 03 marks o	each.		
5.	. Sectio	on D has 4 Long A	nswer (l	LA) type question	s carryi	ng 05 marks each.			
6.	. Sectio	on E has 3 case bas	sed integ	grated units of asse	essment	(04 marks each) w	with sub	o-parts	
	of the	values of 1, 1 and	2 mark	s each respectively	у.				
7.	. All Qı	uestions are comp	ulsory. H	However, an interr	nal choi	ce in 2 Questions	of 5 ma	rks, 2 Questions	
	of 3 m	narks and 2 Quest	ions of 2	2 marks has been j	provideo	d.			
	An int	ternal choice has b	een pro	vided in the 2 mar	ks ques	tions of Section E			
8.	. Draw	neat figures wher	ever req	uired. Take $\pi = 22$	7 where	ever required if no	t stated		
				SECTIO	NA				
		Soa	tion A	angista of 20 and	otiona	of 1 month cook			
		Sec	uon A	consists of 20 que	suons	of 1 mark each.			
Q.1.	The H	ICF and LCM of	two num	bers are 33 and 20	64 respe	ectively. When the	e first n	umber is	
	comp	letely divided by 2	the quot	tient is 33, then the	other nu	umber is			
	(A)	134	(B)	132	(C)	154	(D)	164	
Q.2.	If the	zeroes of the qua	dratic po	olynomial $x^2 + (a)$	(+1)x	+ b are 2 and -3 ,	then		
	(A)	a = 0, h = 6	(B)	$a = -6 \ h = 5$	(\mathbf{C})	a = 5 h = -6	(D)	$a = 0 \ b = -6$	
	(11)	<i>u</i> = 0, <i>b</i> = 0	(D)	u = 0, b = 5	(C)	u = 5, b = 0	(D)	u = 0, v = 0	
Q.3.	If p, q and r are rational numbers and $p \neq q \neq r$, then roots of the equation $(p^2 - q^2)x^2 - (q^2 - r^2)x + (r^2 - p^2) = 0$ are								
	(A)	$\frac{p}{q}, \frac{r}{p}$	(B)	$\frac{p^2}{q^2}, \frac{r^2}{q^2}$	(C)	$1, \frac{p^2 - q^2}{r^2 - p^2}$	(D)	$-1, \frac{p^2 - r^2}{p^2 - q^2}$	

Q.8.	If three points (0, 0), $(3, \sqrt{3})$ and $(3, \lambda)$ forms an equilateral triangle, then λ equals										
	(A)	3	(B)	$\sqrt{3}$	(C)	1	(D)	-3			
Q.9.	If $\triangle ABC$ is right angled at C, then the value of cos (A + B) is										
	(A)	$\sqrt{3}$	(B)	1	(C)	0	(D)	$\frac{1}{\sqrt{3}}$			
Q.10.	If $cosec \theta - \cot \theta = \frac{1}{3}$, then the value of $(cosec \theta + \cot \theta)$ is										
	(A)	1	(B)	$\sqrt{3}$	(C)	0	(D)	3			
Q.11.	The angle tower is	le of elevatio	on of the top	of a 15 m hig	h tower at a p	point 15 m av	vay from the	base of the			
	(A)	60°	(B)	45°	(C)	30°	(D)	0°			
Q.12.	If the an centre 'C	gle between D' is 60°, th	the two tang en the length	ents drawn fr of OP is	om an externa	al point P to	a circle of rad	dius ' a ' and			
	(A)	а	(B)	$\frac{1}{2a}$	(C)	2a	(D)	a ²			
Q.13.	In the fig respectiv equal to	gure, PQL ar	nd PRM are t a point on th	tangents to the ne circle such	e circle with c that \angle SQL =	centre O at th 50° and ∠SI	e points Q an	nd R, en ∠QSR is			
	(A)	40°	(B)	60°	(C)	50°	(D)	30°			

Q.14.	If the difference between the circumference and the radius of a circle is 37 cm, then using $\pi = \frac{22}{7}$ the circumference (in cm) of the circle is								
	(A)	44	(B)	154	(C)	14	(D)	7	
Q.15.	If the wheel of an engine of a train is $4\frac{2}{7}m$ in circumference makes seven revolutions in 4 seconds, then the speed of the train is								
	(A)	33 km/h	(B)	27 km/h	(C)	37 km/h	(D)	40 km/h	
Q.16.	The mea	n of 25 obser	vations is 9	9. If each obser	vation is in	creased by 4, tl	hen the nev	v mean is	
	(A)	23	(B)	10	(C)	9	(D)	13	
Q.17.	A box co then the	ontains cards probability th	bearing num	mbers from 6 to an odd number	o 70. If one less than 3	card is drawn 0 is	at random	from the box,	
	(A)	12 55	(B)	65 12	(C)	12 65	(D)	12 70	
Q.18.	The prob number c	oabily of select of rotten apples	ctingbthe ro in the heap	otten apple rand ?	domly from	a heap of 900	apples is 0.	18. What is the	
	(A)	125	(B)	162	(C)	900	(D)	18	
	DIREC	TION: In q	uestion nu	mbers 19 and	20, a state	ement of Asse	rtion (A)	is followed by	
	a statem	ent of Reas	on (R).						
	Choose	the correct of	option.						
	(a) E	Both Assertion	(A) and \mathbb{R}	Reason (R) are	true and Re	ason (R) is the	correct exp	planation	
	0 (h) D	t Assertion (A).	(\mathbf{D}) are \mathbf{A}	mia and Da	(\mathbf{D}) is not	the compact		
	(U) D e	xplanation of	$\frac{1}{2}$ Assertion	(A).	iue anu ke	asoli (K) 18 110t		L	
	(c) A	ssertion (A)	is true but l	Reason (R) is fa	alse.				
	(d) A	ssertion (A)	is false but	Reason (R) is	true.				

Q.19.	<i>Statement A (Assertion):</i> If we join two hemispheres of same radius along their bases, then we get a sphere.
	<i>Statement R (Reason):</i> A tank is made of the shape of a cylinder with a hemispherical depression at one end. The height and radius of the cylinder are respectively 1.45 m and radius is 30 cm. The total surface area of the tank is $3.3 m^2$
Q.20.	Statement A (Assertion): $-5, \frac{-5}{2}, 0, \frac{5}{2}, \dots, \dots$ is in Arithmetic Progression.
	<i>Statement R (Reason):</i> The terms of an Arithmetic Progression cannot have both positive and negative rational numbers.
	SECTION B
	Section B consists of 5 questions of 2 marks each
Q.21.	A forester wants to plant 66 apple trees, 88 banana trees and 110 mango trees in equal rows (in terms of number of trees). Also, he wants to make distinct roots of the trees (only one type of tree in one row). Find the minimum number of rows required.
Q.22.	In figure, ABC is an isosceles triangle in which $AB = AC$. E is a point on the side CB produced, such that $FE \perp AC$. If $AD \perp CB$, prove that: $AB \times EF = AD \times EC$.
Q.23.	If $3x = cosec \ \theta$ and $\frac{3}{x} = \cot \theta$, then find the value of $3\left(x^2 - \frac{1}{x^2}\right)$.
	(OR)
	If $\cot \theta = \frac{15}{8}$, then evaluate $\frac{(2+2\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(2-2\cos\theta)}$.
Q.24.	In the given figure, O is the centre of the circle, PQ is a chord and PT is tangent to the circle at P. If $\angle POQ = 70^\circ$, find $\angle TPQ$.
	Т

Q.25.	A wire is looped in the form of a circle of radius 28 cm. It is reverted into a square form. Determine the area of the square.								
	(OR)								
	Find the area of the segment of a circle of radius 14 cm, if the corresponding arc APB is 22 cm.								
	O 14 cm B P								
	SECTION C								
	Section C consists of 6 questions of 3 marks each								
Q.26.	Prove that $3 - 2\sqrt{7}$ is irrational, given that $\sqrt{7}$ is irrational								
Q.27.	If one zero of the quadratic polynomial $f(x) = 4x^2 - 8kx + 8x + 9$ is negative of the other, then								
	The zeroes of $Kx^2 + 3Kx + 2$.								
Q.28.	If $(6, 0)$ and $(0, 2)$ are two of the points of intersections of two lines represented by a pair of linear equations. Then,								
	(i) How many points of intersections does the pair of linear equations have in total? Justify your answer.(ii) Find the equation that represents one of the lines of the above pair. Show your work.								
	(OR)								
	The area of a rectangle reduces by 160 m^2 if its length is increased by 5 m and breadth is reduced by								
	4 <i>m</i> . However, if the length is decreased by 10 <i>m</i> and breadth is increased by 2 <i>m</i> , then its area is								
	decreased by 100 m^2 . Find the dimensions of the rectangle.								
Q.29.	Prove that $:(\sin^4 \theta - \cos^4 \theta + 1) \csc^2 \theta = 2.$								

Prove that the tangents drawn at the end points of a chord of a circle make equal angles with the chord							
(OR)							
In the figure, quadrilatera	l ABCD circumscribed th	ne circle. Find the length	of the side CD?				
HA = (4 - x)cm $HA = (4 - x)cm$ H H H G							
The frequency distribution of daily rainfall in a town during a certain period is shown below.							
	Rainfall(in mm)	Number of days					
	0-20	7					
	20-40	Х					
	40 - 60	10					
	60 - 80	4					
Unfortunately, due to erro	ors, the information on the	e $20 - 40$ mm range got d	leleted from the data.				
If the mean daily rainfall for the period was 35 mm, find the number of days when the rainfall ranged between $20 - 40$ mm. Show your work.							
	SECTION	D					
Section	n D consists of 4 quest	ions of 5 marks each					
An express train takes 1 Bengaluru (without taking average speed of the expr speed of the two trains.	hour less than the passeng g into consideration the ti ress train is 11 km/h more	ger train to travel 132 km me they stop at intermedies than that of the passenge	between Mysore and iate stations). If the er train, find the average				
	Prove that the tangents dr chord In the figure, quadrilatera The frequency distribution The frequency distribution Unfortunately, due to error If the mean daily rainfall ranged between 20 – 40 r Section An express train takes 1 Bengaluru (without takin, average speed of the expr speed of the two trains.	Prove that the tangents drawn at the end points of a chord (O) In the figure, quadrilateral ABCD circumscribed the second sec	Prove that the tangents drawn at the end points of a chord of a circle make e chord (OR) In the figure, quadrilateral ABCD circumscribed the circle. Find the length $AE = xcm$ E $BF = 13cm$ AE = xcm E $BF = 13cmAD = 5cm$ $BF = 13cmAD = 5cm$ $CF = (2y - 3)cnThe frequency distribution of daily rainfall in a town during a certain periodRainfall(in mm) Number of days0 - 20$ $720 - 40$ $x40 - 60$ $1060 - 80$ $4Unfortunately, due to errors, the information on the 20 - 40 mm range got dIf the mean daily rainfall for the period was 35 mm, find the number of daysranged between 20 - 40 mm. Show your work.SECTION DSection D consists of 4 questions of 5 marks eachAn express train takes 1 hour less than the passenger train to travel 132 kmBengaluru (without taking into consideration the time they stop at intermedaverage speed of the express train is 11 km/h more than that of the passengerspeed of the two trains.$				

	(OR)
	In a class test, the sum of the marks obtained by P in Social Science and Science is 28. Had he got 3 more marks in Social Science and 4 marks less in Science, the product of marks obtained in two subjects would have been 180. Find the marks obtained in the two subjects separately.
Q.33.	P and Q are points on the sides AB and AC respectively of a triangle ABC. If $AP = 2cm$, $PB = 4 cm$, $AQ = 3 cm$, $QC = 6 cm$. Prove that $BC = 3PQ$.
Q.34.	Two rectangular sheets of dimensions 45 cm × 155 cm are folded to make hollow right circular cylindrical pipes, such that there is exactly 1 cm of overlap when sticking the ends of the sheet. Sheet 1 is folded along its length, while Sheet 2 is folded along its width. That is, the top edge of the sheet is joined with its bottom edge in both the sheets, as depicted by the arrow in the figure below. Both pipes are closed on both ends to form cylinders. i) Find the difference in the curved surface areas of the two cylinders. ii) Find the ratio of the volumes of the two cylinders formed.(Assume that the sheets have negligible thickness $\underbrace{155 \text{ cm}}_{45 \text{ cm}} \underbrace{155 \text{ cm}}_{45 \text{ cm}} \underbrace{155 \text{ cm}}_{5 \text{ keet 1}} \underbrace{155 \text{ cm}}_{5 \text{ keet 1}} \underbrace{155 \text{ cm}}_{5 \text{ keet 2}} \underbrace{150 \text{ cm}}_{5 \text{ kee 2}} \underbrace{150 \text{ cm}}_{5 \text{ kee 2}} \underbrace{150 \text{ cm}}_{5 \text{ kee 2}} \underbrace{150 \text{ cm}}_{5 $
	(OR)

	SECTION E							
	Case study- based questions are compulsory							
Q.36.	Case study-based question 1:							
	India is a competitive manufacturing location due to location due to the low cost of manpower and strong technical and engineering capabilities contributing to higher quality production runs. The production of TV sets in a factory increases uniformly by a fixed number every year. It produced 20400 sets in 8th year and 29200 in 12th year.							
	Now, answer the following questions based on the above given information.							
	(I) What is the production during the first year. (1 m)							
	(II) In which year the production is 16000. (1 m)							
	(III-A) What is the total production in first three years. (2 m)							
	(OR)							
	(III-B)Calculate the difference in production during 7^{th} year and 4^{th} year. (2 m)							

Q.37.	Case study-based question 2:	
	In a coffee shop, coffee is served in two types of cups. One is cylindrical in sha cm and height 14 cm and the other is hemispherical with diameter 21 cm.	pe with diameter 7
	Based on the above information answer the following questions.	
	(I) Find the area of the base of the cylindrical cup?	(1 m)
	(II-A) What is the capacity of the hemispherical cup?	(2 m)
	(OR) .	
	(II-B) Find the capacity of the cylindrical cup?	(2 m)
	(III) What is the curved surface area of the cylindrical cup?	(1 m)
Q.38.	Case study-based question 3:	
	A Satellite flying at height h is watching the top of the two tallest mountains in Karnataka, them being Nanda Devi(height 7,816 m) and Mullayanagiri (height of depression from the satellite, to the top of Nanda Devi and Mullayanagiri are respectively. If the distance between the peaks of the two mountains is 1937 km vertically above the midpoint of the distance between the two mountains.	Uttarakhand and 1,930 m). The angles 2 30° and 60° n, and the satellite is

Now, answer the following questions.	
(1) What is the angle of elevation if a man is standing at a distance of 7816 m from k	Nanda Davi ?
(1) what is the angle of elevation if a man is standing at a distance of 7810 in from 1	Nalida Devi ?
	(1 m)
(II) If a mile stone very far away from, makes 45° to the top of Mullanyangiri mour	ntain. So, find
the distance of this mile stone from the mountain.	(1 m)
(III-A) What is the distance of the satellite from the top of Nanda Devi? (2 I	m)
(OR)	
(III-B) What is t he distance of the satellite from the ground? (2 r	m)

Answers								
Answers	1	В	2	D	3.	D	4	А
	5	С	6	А	7	А	8	В
	9	С	10	D	11	В	12	С
	13	А	14	А	15	В	16	D
	17	С	18	В	19	В	20	С

21	12	23	a)1/3 b)225/64	24	35°	25	a)1936 b)154 sq.cm
27	X=-2, -1	28	(i)a)more than 1, coincident lines b)x+3y=6	28	l=70 m,b= 80 m	30	6 cm
31	23	32	Passenger train-33km/h Express train- 44km/h	32	Social Science= 12 ,9 Science=16,19	34	(a)(i)110cm, (ii)124:441 (b) (i) 32 can (ii)21952cu.cm
36	(i) 5000 (ii) 6 th year (iii-A) 21600 (iii-B) 6600	37	(i) 38.5 <i>sq. cm</i> (ii-A) 2425.5 cu.cm (ii-B) 539 cu.cm (iii) 308 cu.cm	38	(i) 35° (ii) 1930 m (iii-A) 1118.36 m (iii-B) 567 m		